A statistically derived parameterization for the collagen triple-helix.
نویسندگان
چکیده
The triple-helix is a unique secondary structural motif found primarily within the collagens. In collagen, it is a homo- or hetero-tripeptide with a repeating primary sequence of (Gly-X-Y)(n), displaying characteristic peptide backbone dihedral angles. Studies of bulk collagen fibrils indicate that the triple-helix must be a highly repetitive secondary structure, with very specific constraints. Primary sequence analysis shows that most collagen molecules are primarily triple-helical; however, no high-resolution structure of any entire protein is yet available. Given the drastic morphological differences in self-assembled collagen structures with subtle changes in assembly conditions, a detailed knowledge of the relative locations of charged and sterically bulky residues in collagen is desirable. Its repetitive primary sequence and highly conserved secondary structure make collagen, and the triple-helix in general, an ideal candidate for a general parameterization for prediction of residue locations and for the use of a helical wheel in the prediction of residue orientation. Herein, a statistical analysis of the currently available high-resolution X-ray crystal structures of model triple-helical peptides is performed to produce an experimentally based parameter set for predicting peptide backbone and C(beta) atom locations for the triple-helix. Unlike existing homology models, this allows easy prediction of an entire triple-helix structure based on all existing high-resolution triple-helix structures, rather than only on a single structure or on idealized parameters. Furthermore, regional differences based on the helical propensity of residues may be readily incorporated. The parameter set is validated in terms of the predicted bond lengths, backbone dihedral angles, and interchain hydrogen bonding.
منابع مشابه
Transient collagen triple helix binding to a key metalloproteinase in invasion and development.
Skeletal development and invasion by tumor cells depends on proteolysis of collagen by the pericellular metalloproteinase MT1-MMP. Its hemopexin-like (HPX) domain binds to collagen substrates to facilitate their digestion. Spin labeling and paramagnetic nuclear magnetic resonance (NMR) detection have revealed how the HPX domain docks to collagen I-derived triple helix. Mutations impairing tripl...
متن کاملHistomorphometrical and Histopathological Evaluation of Hedera Helix Alcoholic Extract on Dermal Collagen Bundles
Introduction: Hedera helix is an evergreen plant used in treatment of wounds in the Iranian folk medicine. One of the main stages in wound healing process is, the proliferative phase in which fibroblasts proliferate within the wounds and produce extracellular matrix. Collagen is the main constituent of extracellular matrix. So the aim of this study was to evaluate the effect of Hedera helix alc...
متن کاملMacrocyclic scaffold for the collagen triple helix.
[structure: see text] Three strands of natural collagen are linked by covalent bonds prior to their folding into a triple helix. We report on a synthetic collagen in which the strands are pendent on a rigid macrocyclic scaffold of C(3) symmetry. The scaffold confers substantial conformational stability upon the collagen triple helix and makes its folding independent of concentration, both desir...
متن کاملNon-linearity of the collagen triple helix in solution and implications for collagen function
Collagen adopts a characteristic supercoiled triple helical conformation which requires a repeating (Xaa-Yaa-Gly)n sequence. Despite the abundance of collagen, a combined experimental and atomistic modelling approach has not so far quantitated the degree of flexibility seen experimentally in the solution structures of collagen triple helices. To address this question, we report an experimental ...
متن کاملLocation of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation.
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 11 11 شماره
صفحات -
تاریخ انتشار 2002